Durchgangsloch-Maschinengewindebohrer, UNI

Ausführung: M2 – M10 DIN 371 mit verstärktem Schaft. M12 – M24 DIN 376 mit Überlaufschaft. M12 – M24 DIN 376 mit Überlaufschaft. M DIN DIN 371 mit verstärktem Schaft. M1 = M24 Anvenedung: Universal-Maschinengewindebohrer für ein breites Einsatzspektrum. Für metrische Regelgewinde nach DIN 13. M DIN DIN 371 mit verstärktem Schaft. M1 = metri den Universal-Maschinengewindebohrer für ein breites Einsatzspektrum im Hochleistungsbereite. Eine hochwertige Lösung für anspruchsvolle Anwendun- gen. HS-# ISO2 6H ISO2 6H 1629 Spezialisierter PM-Universal-Maschinengewindebohrer für breites windebohrer mit innovativer SUPRA PVD-Hartsoffbeschichtung und gere Stanzeit und eine bestere Oberfläche des Gewindes. HS-# ISO2 6H IBO2 6H 1629 Spezialisierter PM-Universal-Maschinengewindebohrer für breites windebohrer mit innovativer SUPRA PVD-Hartsoffbeschichtung und gere Stanzeit und eine bestere Oberfläche des Gewindes. HS-# ISO2 6H IBO2 7N Einsatzspektrum im Hochleistungsberich. HSS E PM. Maschinenge- windebohrer mit innovativer SUPRA PVD-Hartsoffbeschichtung und gere Stanzeit und eine bessere Oberfläche des Gewindes. HS-# GHX HS-# GHX Einsatz Standwei Due KG GS SOND-LICS Nmm ² Nmm ² Marm ² martens. tisch GG/ GG Trans Au/ S	Durchiga	ingaio		usem	nenge	winder	somer,											
Anwendung: Universal-Maschinengewindebohrer für ein breites Einsatzspektrum. Für metrische Regelgewinde nach DIN 13. 1624 Mit einer für den Universaleinsatz spezialisierten Geometrie grundvariante dar. IUNI € metrische Stellensatz spezialisierten Geometrie. 1628 Mit einer für den Universaleinsatz ausgelegten Geometrie. ISOE Gen. ISOE Gen. 1629 Spezialisierter PM-Universal-Maschinengewindebohrer für breites Einsatzspektrum im Hochleistungsbereich. HSS-E PM. Maschinenge- windebohrer mit innovativer SUPRA PV-Lartstoffbeschichtung und Geometrie für den Universaleinsatz. Dieses Werkzeug wurde speziell für die Baerbelrung eines breiten Materialspektrum könwerg aus. Die vorteile sind: eine deutlich höhere Prozesssicherheit, bis zu 1/3 län- gere Standzeit und eine bessere Oberfläche des Gewindes. ISSE SUPRA ISSE SUPRA Einsatz Stadut verscheißfester) und einen höheren Standweg aus. Die vorteile sind: eine deutlich höhere Prozesssicherheit, bis zu 1/3 län- gere Standzeit und eine bessere Oberfläche des Gewindes. Nov GUS SOND_LEG NELMETALLE SUPRA GEHÄHTER SYAHI Kurfter GRUCKY HRC HRC HRC HRC HRC HRC HRC HRC HRC Kurfter Stelgung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch.Ø M3 0,5 566 3,5 2,7 2,5 16,7 22,70 26,500030 M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,200040 M5 0,8 70 6 4,9 4,2 17,30 24,10 28,200050 M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,200050 M4 0,7	Ausführun												М		1		rma al quality	िःज
1628 TN Mit einer für den Universaleinsatz ausgelegten Geometrie. Eine hochwertige Lösung für anspruchsvolle Anwendun- gen. 1624 1629 Spezialisierter PM-Universal-Maschinengewindebohrer für breites Einsatzspektrum im Hochleistungsbereich. HSS-E PM. Maschinenge- windebohrer mit innovativer SUPRA PVD-Hartstoffbeschichtung und Geometrie für den Universaleinsatz. Die Vorteile sind: eine deutlich höhere Prozessichertheti, bis zu 1/3 län- gere Standzeit und eine hohe Zählgkeit (höhere Kan- tenstabilität, verschleißfester) und einen höheren Standweg aus. Die Vorteile sind: eine deutlich höhere Prozessichertheit, bis zu 1/3 län- gere Standzeit und eine bessere Oberfläche des Gewindes. NEMEFALLE SUPRA NEMEFALLE FM CEHARTSTER STAHL FM 1629 SUPRA SUPRA SUPRA SUPRA Vorteile sind of mit./ vorteile sind of mit./ vorteile sind of mit./ vorteile sind of för de Universessicherheit. SUPRA NEMEFALLE FM CEHARTSTER STAHL FM 13 8 - 4 - - 12 - 23 - 13 - - 1624 18 10 - 6 - - 12 - 23 - 13 - - - 1624 Vc [m/min] 13 8 - 4 - - 12 - - - 1624	Für metriso 1624	che Reg Mit e stellt	Regelgewinde nach DIN 13. Iit einer für den Universaleinsatz spezialisierten Geometrie tellt das Werkzeug im HSS-E-Bereich eine sehr leistungsstarke um dvorgete der									UNI						
1629 Spezialisierter PM-Universal-Maschinengewindebohrer für breites Einsatzspektrum im Hochleistungsbereich. HSS-E PM. Maschinenge- windebohrer mit innovativer SUPRA PVD-Hartstöffbeschichtung und Geometrie für den Universaleinsatz. Dieses Werkzeug wurde speziell für die Bearbeitung eines bereiten Materialspektrums konstruiert. HSS-E PM zeichnet sich durch seine hohe Zähigkeit (höhere Kan- tenstabilität, verschleißfester) und einen höheren Standweg aus. Die gere Standzeit und eine bessere Oberfläche des Gewindes. HSS-E PM Maschinenge BKS-E MM HSS-E BKS-E MM GHX Einsatz STAHL INOX GUSS SOND-LEG. NE-METALLE GEHARTETER STAHL Vorteile sind Nmm ² N/mm ² N/mm ² Mm ² martens. Use Bestell- N/mm ² N/mm ² N/mm ² martens. Duplex GG/ GG GG Titan > 850 N/mm ³ 86 % Si Kupfer/ GTS GEHARTETER STAHL Nr. V _c [m/min] 18 10 - 6 - - - - 1624 V _c [m/min] 18 10 - 6 - - 20 - - - 1624 Steigung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch-Ø 1624 1628 1629 Bestell- M2 0,4 45 2,8 2,7 2,5 16,7 2,7,0 2,6,0 0020		Eine I	iner für den Universaleinsatz ausgelegten Geometrie. hochwertige Lösung für anspruchsvolle Anwendun-										-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SUPRA Einsa		pezialisierter PM-Universal-Maschinengewindebohrer für breites												4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Geom für di HSS- tensta	netrie fü e Bearb E PM ze abilität,	r den U eitung eichnet verschl	Iniversal eines bre sich dur eißfeste	einsatz. E eiten Mat ch seine r) und eir	Dieses We terialspek hohe Zäh ten höher	erkzei trums nigkei en St	ug wurde konstru t (höhere andweg	e speziell liert. e Kan- aus. Die		6HX	-					- 80
$ \frac{<700 < 1000 < 1400 \text{ ferrit.}}{N/\text{mm}^2 \text{ N/mm}^2 \text{ martens.}} \frac{1000 \text{ serit.}}{1000 \text{ tisch}} \frac{6G}{\text{GTS}} \frac{GG}{\text{GTS}} \frac{GG}{\text{GTS}} \frac{1000 \text{ serit.}}{850 \text{ N/mm}^2 8\% \text{ si}} \frac{1100 \text{ serie.}}{850 \text{ serie.}} \frac{1100 \text{ serie.}}{850 \text{ serie.}} \frac{1100 \text{ serie.}}{850 \text{ serie.}} \frac{1100 \text{ serie.}}{1000 \text{ serie.}} \frac{1100 \text{ serie.}}{$	Fincatz		Standze			sere Obe		es Ge	windes.			NE-	SUPRA		СЕНА	DTETED (стані	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Linsatz		< 1000			austeni-	Duplex	GG/		Titan >	Alu <	Alu >	Kupfer/ Kupfer-	GFK/CFK/	< 55	< 60	>60	
20 15 - 7 7 - - 15 - 30 - 18 - - - 1629 Steigung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch-Ø Inc. Inc. <thinc.< th=""> <thinc.< th=""></thinc.<></thinc.<>		13	8	-	4	4	-	-	12	-	23	_	13	-	-	-	-	1624
Steigung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch-Ø Inc.	V _c [m/min]	18	10	-	6	6	-	-	12	-	23	-	13	-	-	-	-	1628
Steigung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch-Ø 1624 1628 1629 Bestell-Nr. Gewinde mm E € 6 0.0020 0020 0020 0020 0020 0020 0030 0020 0020 0020 0020 0020 0030 0020 0030 0030 0030 0030 0030 0040 0040 0040 0040 0050 0040 .		20	15	-	7	7	-	-	15	-	30	-	18	-	-	-	-	1629
Steigung Gesamtlänge Schaft-Ø Schaft-Vierkant Kernloch-Ø dampt. TiN SUPRA Nr. Gewinde mm mm mm mm mm mm mm € € € € 10020 M2 0,4 45 2,8 2,1 1,6 20,30 27,60 32,10 0020 M3 0,5 56 3,5 2,7 2,5 16,75 22,70 26,50 0030 M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,20 0040 M5 0,8 70 6 4,9 4,2 17,90 24,10 28,20 0050 M6 1 80 6 4,9 5 17,90 24,10 28,20 0080 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100													format	डन हुन	mat) डत	forma	±ज	
Gewinde mm m0020 Mit Mit <td colspan="2"></td> <td></td> <td></td> <td colspan="2"></td> <td colspan="2"></td> <td>1624</td> <td>4</td> <td>1628</td> <td>16</td> <td>29</td> <td>Bestell-</td>													1624	4	1628	16	29	Bestell-
M2 0,4 45 2,8 2,1 1,6 20,30 27,60 32,10 0020 M3 0,5 56 3,5 2,7 2,5 16,75 22,70 26,50 0030 M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,20 0040 M5 0,8 70 6 4,9 4,2 17,90 24,10 28,20 0050 M6 1 80 6 4,9 5 17,90 24,10 28,20 0060 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0120 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120			Steigung		Gesamtlänge		Schaft-Ø	5	Schaft-Vierkant		Kernloch-Ø						Nr.	
M3 0,5 56 3,5 2,7 2,5 16,75 22,70 26,50 <th0030< th=""> M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,20 0040 M5 0,8 70 6 4,9 4,2 17,90 24,10 28,20 0050 M6 1 80 6 4,9 5 17,90 24,10 28,20 0060 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0120 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120</th0030<>																		
M4 0,7 63 4,5 3,4 3,3 17,20 23,20 27,20 0040 M5 0,8 70 6 4,9 4,2 17,90 24,10 28,20 0050 M6 1 80 6 4,9 5 17,90 24,10 28,20 0060 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0100 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120							,				,							
M5 0,8 70 6 4,9 4,2 17,90 24,10 28,20 <th0050< th=""> M6 1 80 6 4,9 5 17,90 24,10 28,20 0060 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0100 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120</th0050<>							,						,	,				-
M6 1 80 6 4,9 5 17,90 24,10 28,20 0060 M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 0080 M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0100 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120							,		,		,							_
M8 1,25 90 8 6,2 6,8 20,70 28,00 32,70 <th0080< th=""> M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0100 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120</th0080<>									,									_
M10 1,5 100 10 8 8,5 25,80 34,90 40,60 0100 M12 1,75 110 9 7 10,2 31,50 42,70 49,80 0120	-		•						•		-					,		_
M12 1,75 110 9 7 10,2 31,50 42,70 49,800120			,						•									
																		_
	M12		1,75	D			9		7		10,2		31,50		12,70			0120

Durchgangsloch-Maschinengewindebohrer-Satz, UNI

110

110

125

140

140

160

11

12

14

16

18

18

2

2

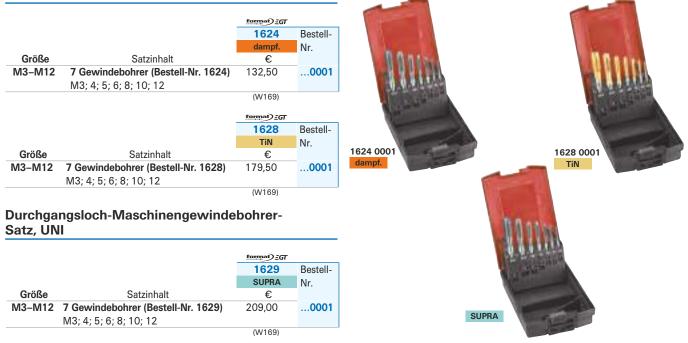
2,5

2,5

2,5

3

M14


M16

M18

M20

M22

M24

9

9

11

12

14,5

14,5

12

14

15,5

17,5

19,5

21

43,90

49,00

68,50

73,00

99,80

95,10

(W168)

59,30

66,40

92,70

98,70

135,00

129,00

(W168)

69,20

77,50

108,50

115,00

157,50

150,00

(W168)

...0120 ...0140

...0160

...0180

...0200 ...0220

...0240